Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Hearts ; 4(4): 97-117, dez.2023. ilus
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1530621

ABSTRACT

Cardiomyopathies are major causes of heart failure. Chagas disease (CD) is caused by the parasite Trypanosoma cruzi, and it is endemic in Central and South America. Thirty percent of cases evolve into chronic chagas cardiomyopathy (CCC), which has worse prognosis as compared with other cardiomyopathies. In vivo bioenergetic analysis and ex vivo proteomic analysis of myocardial tissues highlighted worse mitochondrial dysfunction in CCC, and previous studies identified nuclear-encoded mitochondrial gene variants segregating with CCC. Here, we assessed the role of the mitochondrial genome through mtDNA copy number variations and mtDNA haplotyping and sequencing from heart or blood tissues of severe, moderate CCC and asymptomatic/indeterminate Chagas disease as well as healthy controls as an attempt to help decipher mitochondrial-intrinsic genetic involvement in Chagas disease development. We have found that the mtDNA copy number was significantly lower in CCC than in heart tissue from healthy individuals, while blood mtDNA content was similar among asymptomatic Chagas disease, moderate, and severe CCC patients. An MtDNA haplogrouping study has indicated that African haplogroups were over represented in the Chagas subject groups in comparison with healthy Brazilian individuals. The European lineage is associated with protection against cardiomyopathy and the macro haplogroup H is associated with increased risk towards CCC. Using mitochondria DNA sequencing, 84 mtDNA-encoded protein sequence pathogenic variants were associated with CCC. Among them, two variants were associated to left ventricular non-compaction and two to hypertrophic cardiomyopathy. The finding that mitochondrial protein-coding SNPs and mitochondrial haplogroups associate with risk of evolving to CCC is consistent with a key role of mitochondrial DNA in the development of chronic chagas disease cardiomyopathy.

2.
Front Immunol ; 13: 958200, 2022.
Article in English | MEDLINE | ID: mdl-36072583

ABSTRACT

Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Trypanosoma cruzi , Chagas Disease/genetics , Epigenesis, Genetic , Humans , Transcription Factors/genetics
3.
Front. immunol ; 13(958200): 01-16, Aug. 2022. graf, ilus, tab
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1400349

ABSTRACT

Abstract: Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.


Subject(s)
Humans , Chagas Cardiomyopathy , Chagas Disease/genetics , Transcription Factors/genetics , Trypanosoma cruzi , Epigenesis, Genetic , Methylation
4.
PLoS One ; 8(12): e83446, 2013.
Article in English | MEDLINE | ID: mdl-24367596

ABSTRACT

AIMS: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC). One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin (ACTC1) have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1 gene in CCC pathogenesis. METHODS AND RESULTS: We conducted a proteomic and genetic study on a Brazilian study population. The genetic study was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and the replication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower in myocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping a case-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP) in the ACTC1 gene identified rs640249 SNP, located at the 5' region, as associated to CCC. Associations are borderline after correction for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype. Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in the promoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replication cohort will be useful. CONCLUSIONS: Genetic variations at the ACTC1 gene may contribute to progression to chronic Chagas Cardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1 promoter regions.


Subject(s)
Actins/genetics , Chagas Cardiomyopathy/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Actins/metabolism , Female , Gene Expression Regulation , Humans , Male , Myocardium/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
PLos ONE ; 8(12): 1-16, 2013. ilus
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1065112

ABSTRACT

Aims: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to alife-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC). One third of T. cruzi-infectedindividuals progress to CCC while the others remain asymptomatic (ASY). A possible genetic component to diseaseprogression was suggested by familial aggregation of cases and the association of markers of innate and adaptiveimmunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin(ACTC1) have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1gene in CCC pathogenesis.Methods and Results: We conducted a proteomic and genetic study on a Brazilian study population. The geneticstudy was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and thereplication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower inmyocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping acase-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP) in the ACTC1gene identified rs640249 SNP, located at the 5’ region, as associated to CCC. Associations are borderline aftercorrection for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype.Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in thepromoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replicationcohort will be useful.Conclusions: Genetic variations at the ACTC1 gene may contribute to progression to chronic ChagasCardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1promoter regions.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...